Preliminary results of a biomechanics driven design of a total ankle prosthesis
نویسندگان
چکیده
Introduction A new design of total ankle replacement [1] was developed according to extensive prior biomechanical research [2-5]. A linkage-based mathematical model was used to design for the first time ligament-compatible shapes of the prosthesis components in the sagittal plane (Fig. 1). The radius of the metal talar component in the sagittal plane is about 50% longer than that of the normal talus, the metal tibial component is spherically convex. A fully conforming meniscal bearing is interposed between them and free to move. Experiments in cadaver specimens confirmed the mathematical prediction that the bearing moves forwards on both metal components during dorsiflexion and backwards during plantarflexion. FEA models [6] and experiments with a wear simulator [7] confirmed that the risk of wear is minimised. Preliminary clinical results are here reported as support to the biomechanical claims.
منابع مشابه
Evaluation of a Viscoelastic Ankle-Foot Prosthesis at Slow and Normal Walking Speeds on an Able-Bodied Subject
Objectives: This paper describes further improvement and preliminarily evaluation of a novel viscoelastic ankle-foot prosthesis prototype. The objective was to control the ankle hysteresis at slow and normal walking speeds. Methods: Inspired by the ankle biomechanics, in which the hysteresis differs based on the gait speeds, a manually damping control mechanism imbedded in the prosthesis for...
متن کاملDesign and Preliminary Evaluation of a Two DOFs Cable-Driven Ankle–Foot Prosthesis with Active Dorsiflexion–Plantarflexion and Inversion–Eversion
This paper describes the design of an ankle-foot robotic prosthesis controllable in the sagittal and frontal planes. The prosthesis was designed to meet the mechanical characteristics of the human ankle including power, range of motion, and weight. To transfer the power from the motors and gearboxes to the ankle-foot mechanism, a Bowden cable system was used. The Bowden cable allows for optimal...
متن کاملTotal ankle replacement using HINTEGRA, an unconstrained, three-component system: surgical technique and pitfalls.
Total ankle replacement (TAR) has become a valuable treatment option in patients with end-stage ankle osteoarthritis. One popular 3-component system, the HINTEGRA TAR, is an unconstrained system that provides inversion-eversion stability. More natural biomechanics of the replaced ankle may be expected when anatomic considerations drive prosthesis design. The HINTEGRA prosthesis includes 2 anato...
متن کاملOptimization of Ankle-Foot Prosthesis with Active Alignment by Passive Elements
Today, often ankle’s active prosthesis is used for transtibial amputated people’s walking, because these prostheses have some advantages such as increasing power and decreasing metabolism. In most of active prosthesis in order to create a movement or increase the force at the push-off, electrical actuators are used like a motor. In cases where a higher-power motor is necessary, the capacity, we...
متن کاملBiomechanics of the ankle-foot system during stair ambulation: implications for design of advanced ankle-foot prostheses.
Unilateral lower limb prosthesis users display temporal, kinematic, and kinetic asymmetries between limbs while ascending and descending stairs. These asymmetries are due, in part, to the inability of current prosthetic devices to effectively mimic normal ankle function. The purpose of this study was to provide a comprehensive set of biomechanical data for able-bodied and unilateral transtibial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Foot and Ankle Research
دوره 1 شماره
صفحات -
تاریخ انتشار 2008